

铣削机器人能够在管段内打磨1/10毫米。根据预期用途,它们可以与管线的尺寸相匹配,当与标准操作元件结合使用时,它们可以作用于一段管线上的每一点。检查员系统机器人正被用于站的现代化改造。由于这些机器人的能力,许多反应堆可以得到维护。
使用领域
对于管道喷嘴,有两种非常重要的材料。它们是Inconel 600(喷嘴材料)和SA508-69(安全端)。为了使这两种材料能够适当地连接在一起,必须使用合适的焊接覆层。这些焊接覆层是在大约15-20年前开发的,不再代表焊接技术的前沿。







Perdereau,V提出了一种混合机器人位置控制方案。随后,周等人提出了一种基于自适应阻抗控制的打磨机器人混合控制策略近设计了一个模糊力控制器,在除锈过程中模仿人类的行为。随后,赵等人提出了一种基于模糊比例积分微分(PID)的力/位扰动抑制控制策略。对于预期的15 N接触力,所提出的控制策略可以实现13.4%的力控制精度,并且0.0362 mm的材料去除深度可以达到1.2微米的精度.朱等提出了一种基于一维力传感器PID控制器的动态控制方法。抛光表面的粗糙度Ra %3C 0.4微米,材料去除深度更稳定,偏差保持在0.003 mm,40 N时的均方差为0.37 N


该方法使用产品设计模型来设计尺寸公差规格,以预测工件几何模型中的可能变化,使用迭代近点(ICP)方法来将每个点云与来自工件的测量点云进行匹配.为了进一步提率和精度,魏提出了一种自动评定铸件加工余量的方法。扫描的点云数据通过“初始对准”和“配准”两个阶段与设计模型对准,以找到配准,并基于配准结果评估加工余量.
在工件打磨方面,胡等开发了机器人去毛刺倒角系统,其中操作人员可以选择计算机辅助设计(CAD)模型上的任何特征,并将所选特征导出用于轨迹生成的刀具路径。然而,人工特征选择是低效的。张等提出了一种用于精密铸造有几何偏差叶片的自适应打磨方法.将叶片的测量数据与设计模型进行匹配,求解相应的匹配矩阵,确定铸造叶片的位置。